
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
一、多层前向神经网络
多层前向神经网络由三部分组成:输出层、隐藏层、输出层,每层由单元组成;
输入层由训练集的实例特征向量传入,经过连接结点的权重传入下一层,前一层的输出是下一层的输入;隐藏层的个数是任意的,输入层只有一层,输出层也只有一层;
除去输入层之外,隐藏层和输出层的层数和为n,则该神经网络称为n层神经网络;
一层中加权求和,根据非线性方程进行转化输出;理论上,如果有足够多的隐藏层和足够大的训练集,可以模拟出任何方程;
二、设计神经网络结构
使用神经网络之前,必须要确定神经网络的层数,以及每层单元的个数;
为了加速学习过程,特征向量在传入输入层前,通常需要标准化到0和1之间;
离散型变量可以被编码成每一个输入单元对应一个特征值可能赋的值
比如:特征值A可能去三个值(a0,a1,a2),那么可以使用3个输入单元来代表A
如果A=a0,则代表a0的单元值取1,其余取0;
如果A=a1,则代表a1的单元值取1,其余取0;
如果A=a2,则代表a2的单元值取1,其余取0;
神经网络既解决分类(classification)问题,也可以解决回归(regression)问题。对于分类问题,如果是两类,则可以用一个输出单元(0和1)分别表示两类;如果多余两类,则每一个类别用一个输出单元表示,所以输出层的单元数量通常等一类别的数量。
没有明确的规则来设计最佳个数的隐藏层,一般根据实验测试误差和准确率来改进实验。
更多内容请关注【深圳IT培训】